Substitutions of the highly conserved M2 leucine create spontaneously opening rho1 gamma-aminobutyric acid receptors.

نویسندگان

  • Y Chang
  • D S Weiss
چکیده

All members of the receptor-operated ion channel family that includes gamma-aminobutyric acid (GABA), glycine, nicotinic acetylcholine, and serotonin type 3 receptors have a conserved leucine near the center of the presumed second membrane-spanning domain. This leucine has been postulated to play a role in the gating of the pore. In this study, we examined the effects of mutating this leucine (L301) on the function of human homomeric rho1 GABA receptors. Oocytes expressing rho1 GABA receptors in which this leucine was substituted with alanine (A), glycine (G), serine (S), threonine (T), valine, or tyrosine, but not isoleucine or phenylalanine, demonstrated larger-than-normal resting conductances in the absence of GABA. This resting conductance had a reversal potential (and shifted reversal potential with chloride substitution) indistinguishable from that of the wild-type rho1 GABA-activated current. This resting conductance was antagonized by picrotoxin and, in the case of the A, G, S, and T substitutions, by GABA itself. Although the rho1 competitive antagonist 3-aminopropyl(methyl)-phosphinic acid did not block the resting conductance, this compound did competitively inhibit the GABA-mediated antagonism of the resting conductance. At higher concentrations, both 3-aminopropyl(methyl)-phosphinic acid and GABA directly activated the A, G, S, and T mutant receptors. Taken together, these data suggest that substitution of this highly conserved leucine with either small or polar residues produced rho1 GABA receptors that can open in the absence of GABA and support the hypothesis that this leucine may play a key role in the gating of the pore.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of recombinant gamma-aminobutyric acid (GABA)(A) and GABA(C) receptors by protein kinase C.

Activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate induced a continuous decrease in the gamma-aminobutyric acid (GABA)-activated current amplitude from recombinant GABA receptors (formed by rho1 or alphabetagamma subunits) expressed in Xenopus oocytes. This decline was due to internalization of receptors from the plasma membrane as confirmed by a decrease in surface fluores...

متن کامل

GABAA Receptor Subunits in Rat Testis and Sperm

Background γ-Aminobutyric acid (GABA) is considered to be the predominant inhibitory neurotransmitter in mammalian central nervous systems (CNS). There are two major classes of GABA receptors: GABAARs and GABABRs. The GABAA receptor is derived from various subunits such as alpha1-alpha 6, beta1-beta 3, gamma1-gamma 4, delta, epsilon, pi, and rho1-3. Intensive research has been performed to und...

متن کامل

Intervention of the Gamma-Aminobutyric Acid Type B Receptors of the Amygdala Central Nucleus on the Sensitivity of the Morphine-Induced Conditionally Preferred Location in Wistar Female Rats

Background: The amygdala is one of the nerve centers involved in drug reward. It is suggested that the central nucleus of the amygdala (CeA) is involved in morphine dependency. The CeA gamma-aminobutyric acid-ergic (GABAergic) system is a mediator of morphine rewarding effects. In this research, the effects of stimulation or inhibition of CeA GABA type B (GABAB) receptors on sensitization acqui...

متن کامل

Tax1-binding protein 1 is expressed in the retina and interacts with the GABA(C) receptor rho1 subunit.

Macromolecular signalling complexes that link neurotransmitter receptors to functionally and structurally associated proteins play an important role in the regulation of neurotransmission. Thus the identification of proteins binding to neurotransmitter receptors describes molecular mechanisms of synaptic signal transduction. To identify interacting proteins of GABA(C) (where GABA is gamma-amino...

متن کامل

Identification of GABA receptors in chick retinal pigment epithelium.

PURPOSE The retinal pigment epithelium (RPE) is a multifunctional, monolayer of cells located between the neural retina and the choroicapillaris. γ-Aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the retina and GABA receptors are known to be present in chick retina, sclera and cornea. There is a report of genes involved in GABA receptor signaling being expressed in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 53 3  شماره 

صفحات  -

تاریخ انتشار 1998